Acta Crystallographica Section C
Crystal Structure

Two stereoisomeric pentacyclic oxindole alkaloids from Uncaria tomentosa: uncarine C and uncarine E

Ilias Muhammad, ${ }^{\text {a }}$ Ikhlas A. Khan, ${ }^{\text {a,b }}$ Nikolaus H. Fischer ${ }^{\text {b }}$ and Frank R. Fronczek ${ }^{\mathrm{C} *}$

${ }^{\text {a }}$ National Center for Natural Products Research, RIPS, School of Pharmacy, University of Mississippi, University, MS 38677, USA, ${ }^{\mathbf{b}}$ Department of Pharmacognosy, RIPS, School of Pharmacy, University of Mississippi, University, MS 38677, USA, and ${ }^{\text {c }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: fronz@chxray1.chem.lsu.edu

Received 20 November 2000
Accepted 11 January 2001
The chloroform solvate of uncarine C (pteropodine), ($1^{\prime} S, 3 R, 4^{\prime} \mathrm{a} S, 5^{\prime} \mathrm{a} S, 10^{\prime} \mathrm{a} S$) $-1,2,5^{\prime}, 5^{\prime} \mathrm{a}, 7^{\prime}, 8^{\prime}, 10^{\prime}, 10^{\prime} \mathrm{a}-o c t a h y d r o-1^{\prime}$ -methyl-2-oxospiro[$3 H$-indole- $3,6^{\prime}\left(4^{\prime} \mathrm{a} H\right)$ - $[1 H]$ pyrano[3,4-f]-indolizine]-4'-carboxylic acid methyl ester, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot-$ CHCl_{3}, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), ($\left.1^{\prime} S, 3 S, 4^{\prime} \mathrm{a} S, 5^{\prime} \mathrm{a} S, 10^{\prime} \mathrm{a} S\right)-1,2,5^{\prime}, 5^{\prime} \mathrm{a}, 7^{\prime}, 8^{\prime}, 10^{\prime},-$ 10^{\prime} a-octahydro-1'-methyl-2-oxospiro[3 H -indole- $3,6^{\prime}\left(4^{\prime} \mathrm{a} H\right)$ [1 H]pyrano[3,4-f]indolizine]-4'-carboxylic acid methyl ester, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, has $Z^{\prime}=3$, with no solvent. Both form intermolecular hydrogen bonds involving only the oxindole, with $\mathrm{N} \cdots \mathrm{O}$ distances in the range 2.759 (4)-2.894 (5) \AA.

Comment

The allo-heteroyohimbine-type title molecules uncarine $\mathrm{C},(\mathrm{I})$, and uncarine E, (II) (both $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$), were isolated from Peruvian Uña de Gato (Uncaria tomentosa) and were characterized as the $\mathrm{C} 7(R)$ and $\mathrm{C} 7(S)$ epimers, respectively, by a detailed high-field two-dimensional NMR study. They are the two major biochemical markers of Uña de Gato (Cat's Claw), which is considered an important immunomodulatory botanical that displayed interesting activity against AIDS (Jones, 1995; Keplinger \& Keplinger, 1994; Keplinger et al., 1986), as well as Alzheimer's disease and other amyloidoses (Castillo \& Snow, 2000). Out of 12 reported heteroyohimbine-type isomers (Shamma et al., 1967; Seki et al., 1993), only the relative stereochemistry of uncarine C was previously determined by X-ray crystallography (Laus et al., 1996) in a study of the monohydrate hemimethanol solvate. In order to conclusively establish the configurations of all five asymmetric centers of (I) and (II), and to ascertain the relationships between the spiro B and C rings, crystal structure determinations were undertaken. Fortuitously, uncarine C crystallized as the CHCl_{3} solvate, which also allowed direct determination
of its absolute configuration, and by extension, also that of uncarine E .

(I)

(II)

The structures reported herein are in agreement with the tentative isomer assignment using NMR methods that (I) (Fig. 1) is the $\mathrm{C} 7(R)$ allo-isomer of (II) (Fig. 2), with the C and D rings trans, and the D and E rings cis. Our determination of the chloroform solvate also confirms the relative configurations of the asymmetric centers from the previous determination of the water/methanol solvate of uncarine C (Laus et al., 1996).

Uncarine C chloroform solvate has $Z^{\prime}=1$, while uncarine E has $Z^{\prime}=3$, as shown in Fig. 3. However, no pseudosymmetry is apparent, and the fact that Z^{\prime} is greater than 1 is not a result of the low temperature of the determination, since uncarine E also has $Z^{\prime}=3$ at room temperature. Cell dimensions at 296 K are: $a=11.0790$ (8), $b=21.2420$ (17), $c=12.4165$ (6) $\AA, \beta=$ $97.012(5)^{\circ}$ and $V=2900.2$ (3) \AA^{3}, determined using the same crystal and $\mathrm{Cu} K \alpha$ radiation. In both compounds, all $\mathrm{N}-\mathrm{H}$ groups form intermolecular hydrogen bonds with oxindole O1 atoms as acceptors, as detailed in Tables 1 and 2. In the case of the $Z^{\prime}=3$ uncarine E , the hydrogen bonds link molecules into chains in the a direction (order $\ldots A C B A C B \ldots$). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also present in both structures. These interactions are detailed in Tables 2 and 4.

The conformation of the 5-6-6 ring system is fairly constant across the three molecules of uncarine E and uncarine C . The central six-membered ring is a chair. The O-containing sixmembered ring, in both cases, has a conformation in which C15, C16, C17, O2, and C19 lie within 0.083 (3) \AA or less of a common plane. Atom C20 lies out of this plane by 0.709 (3) \AA in uncarine C and by 0.683 (4), 0.658 (4), and 0.679 (4) \AA for

Figure 1
A view of the structure of (I) showing the atom-numbering scheme and ellipsoids at the 50% probability level. The solvent is not shown.
the A, B, and C molecules, respectively, of uncarine E. There is somewhat more variability in the conformation of the fivemembered ring containing N2. In uncarine C, it is nearest to an N 2 envelope, in the B molecule of uncarine E , is nearest a C3 envelope, while in the A and C molecules of uncarine E , it is nearest a C_{2} twist at C6.

The structure of (\pm)-21-oxoisopteropodine (Lynch et al., 1991), which differs from uncarine E only by having a keto oxygen at C21, has been reported.

Figure 2
A view of one of the three independent molecules of (II) showing the atom-numbering scheme and ellipsoids at the 50% probability level.

Figure 3
The three independent molecules of (II).

Experimental

Compounds (I) and (II) were isolated in a large scale from the inner stem bark of Uncaria tomentosa (Wild.) DC. (Rubiaceae) using a standardized procedure (Wagner et al., 1985). Compound (I) was recrystallized from CHCl_{3} / n-hexane as plates [m.p. 492-493 K; $[\alpha]_{D}$ $-106^{\circ}\left(c=0.2, \mathrm{CHCl}_{3}\right)$], while (II) was recrystallized as plates from acetone $/ n$-hexane [m.p. $\left.471-472 \mathrm{~K} ;[\alpha]_{D}-80.5^{\circ}\left(c=0.554, \mathrm{CHCl}_{3}\right)\right]$. The initial physical and NMR data recorded at 500 MHz , using a Bruker Avance DRX-500 instrument, were in agreement with those reported in the literature (Phillipson \& Hemingway, 1975; Seki et al., 1993).

Compound (I)

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{CHCl}_{3}$
$M_{r}=487.79$
Monoclinic, $P 2_{1}$
$a=9.3190$ (5) A
$b=7.7083$ (7) \AA
$c=16.8160(14) \AA$
$\beta=102.422(4)^{\circ}$
$V=1179.63(16) \AA^{3}$
$Z=2$

Data collection

KappaCCD diffractometer (with Oxford Cryosystems Cryostream cooler)
ω scans with κ offsets
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.88, T_{\text {max }}=0.97$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.160$
$S=0.98$
5101 reflections
296 parameters
H-atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for (I).

$\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 14$	$62.7(3)$	$\mathrm{C} 20-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$21.6(4)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 7$	$-45.8(3)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 2$	$2.6(6)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$44.1(3)$	$\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 17-\mathrm{C} 16$	$6.6(5)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-24.6(3)$	$\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 15$	$63.7(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 6$	$28.3(3)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 21$	$-51.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 3$	$-2.4(3)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 19$	$-52.8(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 14-\mathrm{C} 15$	$-54.0(3)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 20$	$-63.7(3)$
$\mathrm{C} 3-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 20$	$49.8(3)$	$\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 21-\mathrm{N} 2$	$57.5(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.01	$2.759(4)$	142
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.50	$3.330(4)$	146
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 3$	1.00	2.24	$3.167(6)$	153

Symmetry codes: (i) $1-x, \frac{1}{2}+y, 1-z$; (ii) $x-1, y, z$.

Compound (II)

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$	$D_{x}=1.298 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=368.42$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} \AA$	Cell parameters from 6595
$a=10.9943(8) \AA$	reflections
$b=21.062(3) \AA$	$\theta=2.5-25.0^{\circ}$
$c=12.3039(15) \AA$	$\mu=0.090 \mathrm{~mm}^{-1}$
$\beta=96.860(6)^{\circ}$	$T=120 \mathrm{~K}$
$V=2828.7(5) \AA^{3}$	Needle, colorless
$Z=6$	$0.58 \times 0.07 \times 0.05 \mathrm{~mm}$

$D_{x}=1.298 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6595
rencetions
$\mu=0.090 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.58 \times 0.07 \times 0.05 \mathrm{~mm}$

Data collection

KappaCCD diffractometer (with Oxford Cryosystems Cryostream cooler)
ω scans with κ offsets
13122 measured reflections
8293 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.108$
$S=0.894$
8293 reflections
736 parameters

> 4478 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.058$
> $\theta_{\max }=25.1^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-23 \rightarrow 25$
> $l=-14 \rightarrow 14$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0282 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{\circ} \AA^{-3}$

Table 3
Selected torsion angles (${ }^{\circ}$) for (II).

$\mathrm{C} 21 A-\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 14 A$	$62.1(5)$	$\mathrm{C} 20 A-\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	18.2 (6)
$\mathrm{C} 5 A-\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 7 A$	$-50.6(4)$	$\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A-\mathrm{O} 2 A$	5.8 (7)
$\mathrm{C} 3 A-\mathrm{N} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	$40.0(4)$	$\mathrm{C} 19 A-\mathrm{O} 2 A-\mathrm{C} 17 A-\mathrm{C} 16 A$	4.7 (6)
$\mathrm{N} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{C} 7 A$	$-13.8(5)$	$\mathrm{C} 17 A-\mathrm{O} 2 A-\mathrm{C} 19 A-\mathrm{C} 20 A-38.2$ (5)	
$\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{C} 3 A$	$-15.6(5)$	$\mathrm{O} 2 A-\mathrm{C} 19 A-\mathrm{C} 20 A-\mathrm{C} 15 A$	61.7 (5)
$\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	$39.9(5)$	$\mathrm{C} 16 A-\mathrm{C} 15 A-\mathrm{C} 20 A-\mathrm{C} 19 A-50.7$ (5)	
$\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 14 A-\mathrm{C} 15 A$	$-59.5(5)$	$\mathrm{C} 14 A-\mathrm{C} 15 A-\mathrm{C} 20 A-\mathrm{C} 21 A-53.6$ (5)	
$\mathrm{C} 3 A-\mathrm{C} 14 A-\mathrm{C} 15 A-\mathrm{C} 20 A$	$55.2(5)$	$\mathrm{C} 3 A-\mathrm{N} 2 A-\mathrm{C} 21 A-\mathrm{C} 20 A$	-58.8 (5)

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{O} 1 C$	0.88	1.99	$2.864(5)$	171
$\mathrm{~N} 1 B-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{O} 1 A$	0.88	2.05	$2.894(5)$	161
$\mathrm{~N} 1 C-\mathrm{H} 1 \mathrm{~N} C \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.88	2.03	$2.873(5)$	159
$\mathrm{C} 10 B-\mathrm{H} 10 B \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	0.95	2.60	$3.263(5)$	127
$\mathrm{C} 15 C-\mathrm{H} 15 C \cdots \mathrm{O} A A$	1.00	2.60	$3.528(6)$	155
$\mathrm{C} 20 A-\mathrm{H} 20 A \cdots \mathrm{O} 1 C^{\mathrm{iii}}$	1.00	2.59	$3.459(6)$	145

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, y-\frac{1}{2}, 1-z$; (iii) $x-1, y, z$.

The solvent molecule of uncarine C chloroform solvate exhibits a small disorder, with C24 and Cl3 each occupying two sites. The populations of the major and minor sites of both were constrained to sum to unity, and refined to 0.808 (5) and 0.192 (5), with the minor carbon position isotropic. The maximum residual peak was in the disordered solvent region, $1.2 \AA$ from $\mathrm{Cl} 3 . \mathrm{H}$ atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances of $0.95-1.00 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.88 \AA$, and thereafter treated as riding; $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ of the attached atom or $1.5 U_{\text {eq }}$ for methyl C atoms. A torsional parameter was refined for methyl groups.

For compound (I), data collection: COLLECT (Nonius, 1999); for both compounds, cell refinement: $D E N Z O$ and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents. The authors from the School of Pharmacy, UM, acknowledge the financial support provided in part by the United States Department of Agriculture ARS specific cooperative agreement No. 58-6408-012 and ChromaDex, Irvine, CA, USA, and also thank D. Chuck Dunbar and Riaz Khan for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1025). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Burnett, M. N. \& Johnson, C. K. (1996) Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Castillo, G. \& Snow, A. D. (2000). PCT Int. Appl. WO 99-US19721; Priority: US 98-98473 19980831; AN 2000:161143.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jones, K. (1995). In Cat's Claw: Healing Vine of Peru. Seattle, Washington: Sylvun Press.
Keplinger, K. \& Keplinger, D. (1994). PCT US (CODEN: USXXAM) US 5302661 A 19940412; Application: US 92-954040 19920930 ; Priority: AT 804971 19801007; AN 1994:418017.
Keplinger, K., Wagner, H. \& Kreutzkamp, B. (1986). PCT Int. Appl. (CODEN: PIXXD2) WO 8600524 A1 19860130; Application: WO 84-AT25 19840706; AN 1986:546231.
Laus, G., Brossner, D., Senn, G. \& Wurst, K. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1931-1936.
Lynch, V. M., Mortimore, M., Martin, S. F. \& Davis, B. E. (1991). Acta Cryst. C47, 234-236.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Phillipson, J. D. \& Hemingway, S. R. (1975). J. Chromatogr. 105, 163-178.
Seki, A., Takayama, H., Aimi, N., Sakai, S.-I. \& Ponglux, D. (1993). Chem. Pharm. Bull. 41, 2077-2086.
Shamma, M., Shine, R. J., Kompis, I., Sticzy, T., Morsingh, F., Poisson, J. \& Pousset, J. L. (1967). J. Am. Chem. Soc. 89, 1739-1740.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wagner, H., Kreutzkamp, B. \& Juric, K. (1985). Planta Medica, 5, 419-423.

